Solve for x : 2x+1+32(x−2)=235x
Given: 2x+1+32(x−2)=235x
4(x−2)+3(x+1)2(x+1)(x−2)=235x
5x(4(x−2)+3(x+1))=46(x+1)(x−2)
20x(x−2)+15x(x+1)=46(x2+x−2x−2
20x2−40x+15x2+15x=46(x2−x−2)
35x2−25x=46x2−46x−92
46x2−35x2+25x−46x−92=0
11x2−21x−92=0
11x2−44x+23x−92=0
11x(x−4)+23(x−4)=0
(x−4)(11x+23)=0
Therefore, x=(−2311) or 4