Solve for x: (i)x−1x−2+x−3x−4=313;x≠2,4(ii)1x+22x−3=1x−2,x≠0,32,2(iii)x+1x=3,x≠0(iv)16x−1=15x+1,x≠0,−1(v)1x−3−1x+5=16,x≠3,−5,
(i)5,52(ii)1,3(iii)3±√52(iv)±4(v)−9,7
Find the following integrals. If ddxf(x)=4x3−3x4 such that f(2)=0. Then f(x)is (a)x4+1x3−1298(b)x3+1x4+1298(c)x4+1x3+1298(d)x3+1x4−1298