Solve for x, if :
(√32)x÷2y+1=1 and 8y−164−x2=0
As given⇒(√32)x÷2y+1=1 and 8y−164−x/2=0
⇒(√32)x÷2y+1=1
⇒((25)12)x÷2y+1=1
⇒(252)x÷2y+1=1
⇒25x22y+1=20
⇒25x2−(y+1)=20
⇒5x2−y−1=0
⇒5x−2y=2 ........ (1)
From⇒8y−164−x2=0
⇒(23)y−(42)4−x2=0
⇒23y−((22)2)4−x2=0
⇒23y−216−2x=0
⇒23y=216−2x
⇒3y=16−2x
⇒2x+3y=16 ........ (2)
Multiply eq1 by 3 and eq2 by 2
⇒15x−6y=6 ......(3)
⇒4x+6y=32 ...... (4)
Add eq3 and eq4
⇒19x=38⇒x=2
Now put the value of x in eq1
⇒5×2−2y=2
⇒−2y=−8⇒y=4