(tan−1x)2+(cot−1x)=5π28
(tan−1x)2+(π2−tan−1x2)=5π28
Let tan−1x=k
Then k2+(π2−k)2=5π28
k2+π24+k2−πk=5π28
=2k2−πk+π24−5π28=0
=2k2−πk−3π28=0
=16k2−8πk−3π2=0
=(4k−3π)(4k+π)
k=3π4,k=−π4
x=tan(3π4);x=tan(−π4)
x=−1
(tan−1x)2+(cot−1x)2=5π28⇒x=