(x+1)log(x+1)=100(x+1)
Applying log on both sides, we get
log((x+1)log(x+1))=log(100(x+1))
⇒log10(x+1)log10(x+1)=log10100+log10(x+1)
⇒(log10(x+1))2=log10102+log10(x+1)
⇒(log10(x+1))2−log10(x+1)−2=0
Let t=log10(x+1)
⇒t2−t−2=0
⇒t2−2t+t−2=0
⇒t(t−2)+1(t−2)=0
⇒(t−2)(t−1)=0
∴t=1,2
⇒log10(x+1)=1,log10(x+1)=2
⇒x+1=10,x+1=102=100
⇒x=10−1=9,x=100−1=99
∴x=9,x=99