Solve for x, (−π≤x≤π) the equation : 2(cosx+cos2x)+sin2x(1+2cosx)=2sinx.
How many distinct values of x satisfy the equation in the above range
Given, 2(cosx+cos2x)+sin2x(1+2cosx)=2sinx,for(−π≤x≤π),2(cosx+2cos2x−1)+2sinxcosx(1+2cosx)=2sinx,⟹(cosx+2cos2x−1)+sinx(cosx+2cos2x−1)=0⟹(cosx+2cos2x−1)(1+sinx)=0,sinx=−1,xϵ{−π2}cosx+2cos2x−1,(2cosx−1)(cosx+1),xϵ{−π,−π3,π3,π}i.e,5solutions,xϵ{−π,−π2,−π3,π3,π}