The correct options are
A ±π
B ±π2
C ±π3
2cosx+2cos2x+sin2x+sin3x+sinx−2sinx=0∴2cosx+2cos2x+2sinxcosx+(sin3x−sinx)=0⇒2cosx+2cos2x+2sinxcosx+2cos2xsinx=0⇒2cosx(1+sinx)+2cos2x(1+sinx)=0⇒2(1+sinx)(cosx+cos2x)=0
⇒4(1+sinx)cos(3x2)cos(x2)=0
⇒sinx=−1 or cos(3x2)=0 or cos(x2)=0
⇒x=2nπ+3π2 or x=(2n+1)π3 or x=(2n+1)π
For x belong to [−π,π]
x=−π,−π2,−π3,π3,π3,π