The correct option is A nπ2+(−1)nπ12,n∈Z
Given: sin4x+cos4x=72sinx.cosx
⇒(sin2x+cos2x)2−2sin2x.cos2x=72sinx.cosx
⇒(1)2−(2sinx.cosx)22=74(2sinx.cosx) [∵sin2x+cos2x=1]
⇒(1)2−(sin2x)22=74sin2x [∵2sinx.cosx=sin2x]
⇒2sin22x+7sin2x−4=0
⇒2sin22x+8sin2x−sin2x−4=0
⇒(2sin2x−1)(sin2x+4)=0
⇒sin2x=12 or sin2x=−4
∴sin2x=12 [assin2x=−4 is not possible because −1≤sinθ≤1]
⇒2x=nπ+(−1)nπ6,n∈Z [∵sinθ=sinα⇒θ=nπ+(−1)nα]
⇒x=nπ2+(−1)nπ12,n∈Z