The correct option is B ±2√33a
Given, √ax+1−√ax−1=√ax
Squaring on both the sides, we get
(√ax+1−√ax−1)2=(√ax)2
⇒(√ax+1)2+(√ax−1)2−2√ax+1.√ax−1=ax
⇒ax+1+ax−1−2√ax+1.√ax−1=ax
⇒2ax−ax=2√ax+1.√ax−1
⇒ax=2√ax+1.√ax−1
Squaring on both the sides, we get
a2x2=22(√ax+1.√ax−1)2
⇒a2x2=4[(ax)2−1]
⇒a2x2=4a2x2−4
⇒3a2x2=4
⇒x2=43a2
⇒x=±2√3a or
So, x=±2√33a