wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve for x:
tan1(x+1)+tan1(x1)=tan1831

Open in App
Solution

Given:tan1(x+1)+tan1(x1)=tan1831

We know that tan1A+tan1B=tan1(A+B1AB)

Thus, tan1(x+1)+tan1(x1)=tan1831

tan1(x+1+x11(x+1)(x1))=tan1831

tan1(2x1x2+1)=tan1831

tan1(2x2x2)=tan1831

2x2x2=831

x2x2=431

31x=84x2

4x2+31x8=0

4x2+32xx8=0

4x(x+8)(x+8)=0

(x+8)(4x1)=0

(x+8)=0,(4x1)=0

x=8,14

x=8 is not a possible solution

x=14

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon