wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve for x:tan1(x1)+tan1x+tan1(x+1)=tan13x.

OR

Prove that : (6x8x3112x2)tan1(4x14x2)=tan12x;|2x|<13.

Open in App
Solution

Given that tan1(x1)+tan1x+tan1(x+1)=tan13x

tan1(x1)+tan1(x+1)=tan13xtan1x tan1(x1)+(x+1)1(x1)(x+1)=tan13xx1+3x.xtan12x2x2=tan12x1+3x2 2x2x2=2x1+3x22x(1+3x22+x2)=0Either 2x=0 or (4x21)=0 x=0 or x=±12.OR LHS=Let y=tan1(6x8x3112x2)tan1(4x14x2) Put 2x=tan θθ=tan12x...(i)y=tan1(3 tan θtan3 θ13 tan2 θ)tan1(2 tan θ1tan2 θ)y=tan1(tan 3θ)tan1(tan 2θ)y=3θ2θ=θ=tan12x=RHS. By(i)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon