Solve for x, which satisfy sinx+cosx=minaϵR{1,a2−4a+6}
A
x=nπ+(−1)nπ4+π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=nπ+(−1)nπ4−π4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x=nπ±π4−π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x=nπ−(−1)nπ4−π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bx=nπ+(−1)nπ4−π4 Let f(a)=a2−4a+6 Now f′(a)=2a−4 Or a=2 f"(2)=2 Hence minima. Hence f(2)=4−8+6 =2. Thus min1,a2−4a+6 is 1. Now cosx+sinx=1 Implies √2[sin(x+π4)]=1 Or sin(x+π4)=1√2 Or x+π4=2kπ+π4 and x+π4=(2k+1)π−π4 Therefore x=2kπ and x=(2k+1)π−π2. Hence x=nπ+(−1)nπ4−π4.