Solve for x:x2−(2b−1)x+(b2−b−20)=0
This equation is of the form ax2+bx+c=0
where , a=1, b=−(2b−1), c=(b2−b−20)
For an equation of the form ax2+bx+c=0
x=−b±√b2−4ac2a
Thus for this question, we get x=(2b−1)±√(2b−1)2−4(1)(b2−b−20)2×1
x=(2b−1)±√(4b2−4b+1)−(4b2−4b−80)2
⇒x=(2b−1)±√(4b2−4b+1)−4b2+4b+80)2
⇒x=(2b−1)±√4b2−4b+1−4b2+4b+80)2
⇒x=(2b−1)±√812
⇒x=(2b−1)±92
⇒x=2b−1±92
⇒x=2b−1+92 or, x=2b−1−92
⇒x=2b+82 or, x=2b−102
⇒x=b+4 or, x=b−5
Thus we get, x=b+4,b+5