1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VIII
Mathematics
Reducing Equations to Simpler Form
Solve for x...
Question
Solve for
x
,
y
and
z
, if
x
y
+
x
+
x
+
y
=
23
,
y
z
+
y
+
z
=
31
,
z
x
+
z
+
x
=
4
Open in App
Solution
Given,
x
y
+
x
+
y
=
23
⇒
(
1
+
x
)
(
1
+
y
)
=
24
→
(
1
)
y
z
+
y
+
z
=
31
⇒
(
1
+
y
)
(
1
+
z
)
=
32
→
(
2
)
z
x
+
x
+
z
=
47
⇒
(
1
+
z
)
(
1
+
x
)
=
48
→
(
3
)
(
1
)
×
(
2
)
×
(
3
)
⇒
[
(
1
+
x
)
(
1
+
y
)
(
1
+
z
)
]
2
=
24
×
32
×
48
(
1
+
x
)
(
1
+
y
)
(
1
+
z
)
=
±
192
→
(
4
)
(
4
)
(
1
)
⇒
1
+
z
=
±
192
24
1
+
z
=
±
8
∴
z
=
−
9
(
o
r
)
7
(
4
)
2
)
⇒
1
+
x
=
±
192
32
1
+
x
=
±
6
x
=
−
7
(
o
r
)
5
(
4
)
(
3
)
⇒
1
+
y
=
±
192
48
1
+
y
=
±
4
y
=
−
5
(
o
r
)
3
∴
(
x
=
−
7
,
y
=
−
5
,
z
=
−
9
)
(
o
r
)
(
x
=
5
,
y
=
3
,
z
=
7
)
Suggest Corrections
0
Similar questions
Q.
Solve:
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
.
Q.
Prove that
∣
∣ ∣ ∣
∣
x
y
z
x
2
y
2
z
2
y
z
z
x
x
y
∣
∣ ∣ ∣
∣
=
(
y
−
z
)
(
z
−
x
)
(
x
−
y
)
(
y
z
+
z
x
+
x
y
)
.
Q.
Show that
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
Q.
If
x
+
y
+
z
=
x
y
z
, prove that
x
+
y
1
−
x
y
+
y
+
z
1
−
y
z
+
z
+
x
1
−
z
x
=
x
+
y
1
−
x
y
⋅
y
+
z
1
−
y
z
⋅
z
+
x
1
−
z
x
.
Q.
Solve:
det
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Questions
MATHEMATICS
Watch in App
Explore more
Reducing Equations to Simpler Form
Standard VIII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app