The correct option is C z=(2+i) and (1−3i)
z2−(3−2i)z=(5i−5)
or z2−(3−2i)z−(5i−5)=0
or z=(3−2i)±√(3−2i)2+4(5i−5)2
=(3−2i)±√9−4−12i−202
=(3−2i)±√8i−152
Now √−15+8i
=±{√12{√(−15)2+82+(−15)}+i√12{√(−15)2+82−(15)}}
=±{√12(√289−15)+√12(√289+15)}
=±(1+i4)
⟹z=3−2i±(1+4i)2
⟹z=(2+i) and (1−3i)
Ans: C