The correct option is B x=12y=13z=14
1x−2y+4=0----------(1)
1y−1z+1=0-----------(2)
2z+3x=14------------(3)
Let
1x=A,1y=B,1z=C
The equations become,
A−2B=−4−−−−−(4)B−C=−1−−−−−−(5)2C+3A=14−−−(6)
eqn(4)+eqn(5)×2 gives
A - 2B = -4
2B -2C = -2
______________
A - 2C = -6 ----------(7)
eqn(6)+eqn(7) gives
3A + 2C = 14
A -2C = -6
______________
4A = 8
A=2----------(8)
Substituteing eqn(8) in eqn(4) we get,
2 - 2B = -4
-2B = -6
B = 3 ----------------(9)
Substituting eqn(9)\) in eqn(5)\) we get,
3 - C = -1
-C = -4
C = 4 ---------------(10)
A=1x=2
x=12
B=1y=3
y=13
C=1z=4
z=14
Verification :
Substituting the value of x and y in eqn(1) we get
112−213=2−6+4=−4+4=0=RHS
Substituting the values of y and z in eqn(2) we get,
113−114+1
=3−4+1
4−4
0=RHS