We have dydx=yx+√x2+y2x,x>0....(i)(Consider)f(x,y)=yx+√x2+y2x.Put x=λx, y=λy⇒f(λx,λy)=λyλx+√(λ2x2+λ2y2)λx=yx+√(x2+y2)x=f(x,y).So, f is homogeneousLet y=vx→dydx=v+xdvdx=v+xdvdx in (i)∴v+xdvdx=vxx+√x2+v2x2x ⇒xdvdx=√1+v2⇒∫dv√1+v2=∫dxx ⇒log∣∣v+√1+v2∣∣=log|x|+log C⇒log∣∣∣y+√x2+y2x∣∣∣=log|Cx| ∴y+√x2+y2=Cx2 is the required solution.