Consider the given function:
∫sin2xacos2x+bsin2xdx
putacos2x+bsin2x=t
(−a.2cosxsinx+b.2sinxcosx)dxdt=1
(b−a).sin2xdx=dt
sin2xdx=1b−adt
=1b−a∫1tdt
=1b−alogt+c
=1b−alog(acos2x+bsin2x)+c
Hence this is the answer.
If cosxa=sinxb then |acos2x + bsin2x| is equal to