x+1=83(1−2y)
⟹x=8(1−2y)3−1
⟹x=8(1−2y)−33
⟹x=8−16y−33
⟹x=5−16y3
Let, y=2, then x=5−16(2)3=−9
Similarly, when y=−1,x=7
Now,
2+5y3=x7−2
⟹2+5y3+2=x7
⟹2+5y+63=x7
⟹7(8+5y)3=x
⟹56+35y3=x
Let, y=−1, then x=56+35(−1)3=7
Similarly, when y=−2,x=−8
∴ the intersecting point is (7,−1)