∫80√x√x+√8−xdx
∫80√x√x+√8−x×(√x−√8−x)(√x−√8−x)dx
∫80x−√8x–x22x−8dx
12∫80x−√8x–x2x−4dx
Put x–4=u=⟹dx=du and x2=(u+4)2
=12u+4−√8u+32–(u+4)2udu
=12∫du+2∫duu−12∫√−(u+4)2+8u+32udu
v=u2⟹du=12udv and 1u2=1v
=u2+2logu−14∫√16−vvdv
= fracu2+2logu−12∫w2w2−16dw put √16–v=w and dv=−2√16−vdw
=u2+2logu−12∫w2+16−16w2−16dw
=u2+2logu−12w–8∫dww2−16
=u2+2logu−12√16–u2–8×12log|w−4w+4|
=x−42+2log|x−4|−12√16–(x−4)2–log|√16–u2−4√16−u2+4|
=x−42+2log|x−4|−12√8x–x2–log|√8x–x2−4√8x−x2+4|80
=8−42+2log|8−4|−12√8.8–(8)2–log|√8.8–82−4√8.8−82+4|
−(−2+2log4−0)=4