Part (1) let, y=ex(a+bx) …(1)
Differentiate with respect to x
dydx=e2x(0+b)+(a+bx)e2x.2
From equation (1)
dydx=e2x(b)+y.2 …..(2)
Differentiate again equation (2) with respect to x
d2ydx2=b.e2x.2+.2dydx
From equation (2)
d2ydx2=(dydx−2y).2+.2dydx
d2ydx2=4dydx−4y
Part (2)
Let, y=ex(acosx+bsinx) ….(1)
Differentiate with respect to x
dydx=ex(−asinx+bcosx)+(acosx+bsinx).ex
From equation (1)
dydx=ex(−asinx+bcosx)+y …..(2)
Differentiate again equation (2) with respect to x
d2ydx2=ex(−asinx−bsinx)+dydx
d2ydx2=−ex(asinx+bsinx)+dydx
From equation (1)
d2ydx2=−y+dydx
d2ydx2−dydx+y=0