6x+7y+4z=122⟶1
11x+8y−6z=145⟶2
Multiplying by 8 in equation 1 and by 7 in equation 2
48x+56y+32z=976
77x+56y−42z=1015 [signs will be changed]
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯−29x+74z=−39
let,z=a
−29x+74a=−39
29x=74a+39
Now putting this value in equation1
6(74a+3929)+7y+4a=122
444a+234+203y+116a=3538
203y+560a=3304⟶3
11(74a+3929)+8y−6a=145
814a+429+232y−174a=420
232y+640a=3776⟶4
203y+560a=3304 [signs will be changed]
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯29y+80a=472
⟹y=472−80a29
So, the solutions are,
{(74a+3929),(472−80a29),a} Now, putting a=3,x=9,y=8,z=3
∴So, the solution to positive integers is x=9,y=8,z=3.