wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve 10cot1(1x+x2)dx.

Open in App
Solution

Let I=10cot1(1x+x2)dx
=10tan1(11x+x2)dx
=10tan1(11x(1x))dx
=10tan1(1+(1x)1x(1x))dx
=10{tan1x+tan1(1x)}dx
=10tan1xdx+10tan1(1x)dx
=10tan1xdx+10tan1(1(1x))dx since a0f(x)dx=a0f(ax)dx
=10tan1xdx+10tan1xdx
=210tan1xdx
=210tan1x.1.dx
=2[xtan1x]10210xdx1+x2
=2[xtan1x]10102xdx1+x2
=2[π40][log(1+x2)]10
=π2[log2log1]
=π2log2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon