Solve:
We have,
∫10dx√x+1+√x
I=∫10dx√x+1+√x×√x+1−√x√x+1−√x
I=∫10√x+1+√xx+1−xdx
=∫10(√x+1+√x)dx
=∫10(√x+1)dx+√xdx
=⎡⎢ ⎢ ⎢ ⎢⎣(x+1)12+112+1⎤⎥ ⎥ ⎥ ⎥⎦01+⎡⎢ ⎢ ⎢ ⎢⎣x12+112+1⎤⎥ ⎥ ⎥ ⎥⎦01+C
=⎡⎢ ⎢ ⎢ ⎢⎣(x+1)3232⎤⎥ ⎥ ⎥ ⎥⎦01+⎡⎢ ⎢ ⎢ ⎢⎣x3232⎤⎥ ⎥ ⎥ ⎥⎦01+C
=23⎡⎢⎣(x+1)32⎤⎥⎦01+23⎡⎢⎣x32⎤⎥⎦01+C
=23⎡⎢⎣(1+1)32−(0+1)32⎤⎥⎦+23⎡⎢⎣(1)32−(0)32⎤⎥⎦
=23⎡⎢⎣232−1⎤⎥⎦+23[1]
=23⎡⎢⎣232−1+1⎤⎥⎦
=23232
Hence, this is the answer.