∫10exx2−e2xdx
=x2e2−|2xe2−e2x2
=x2e2−2[xe2−|ex]−12e2x
=x2e2−2(xex−ex)−12e2x|1x=0
=(e−2(e−e)−12e2)−(0+2−12)
=e−12e2−32