I=∫1)log(2−x2+x)dx
=∫10log(2−x)dx−∫10log(2+x)dx [∵logmn=logm−logn]
=I1−I2
Let I′1=∫log(2−x)dx [using integration by parts]
=log(2−x)∫1.dx−∫{ddx(log(2−x))∫1.dx}dx
=xlog(2−x)−∫12−x.(−1)xdx
=xlog(2−x)+∫x2−xdx
=xlog(2−x)+∫−(2−x)+22−xdx
=xlog(2−x)+∫−(2−x)2−xdx+∫22−xdx
=xlog(2−x)−∫dx+2∫dx2−x
=xlog(2−x)−x−2log(2−x)
∴I1=∫10log(2−x)dx=[xlog(2−x)−x−2log(2−x)]10
=1.log(2−1)−1−2log(2−1)−0+0+2log2
=log1−1−2log1+2log2
=−1+2log2 [∵log1=0]
=2log2−1
Similarly I′2=∫log(2+x)dx
=log(2+x)∫dx−∫{ddx(log(2+x))∫dx}dx
=xlog(2+x)−∫12+xxdx
=xlog(2+x)−∫2+x−22+xdx
=xlog(2+x)−∫2+x2+xdx+∫22+xdx
=xlog(2+x)−∫dx+2∫12+xdx
=xlog(2+x)−x+2log(2+x)
I2=∫10log(2+x)dx
=[xlog(2+x)−x+2log(2+x)]10
=1log(2+1)−1+2log(2+1)−0+0−2log(2)
=log(3)−1+2log3−2log2
=3log3−2log2−1
∴I=I1−I2
=2log2−1−3log3+2log2+1
=4log2−3log3
=log24−log33=log2433=log(1627).