wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve 10log(2x2+x)dx

Open in App
Solution

I=1)log(2x2+x)dx
=10log(2x)dx10log(2+x)dx [logmn=logmlogn]
=I1I2
Let I1=log(2x)dx [using integration by parts]
=log(2x)1.dx{ddx(log(2x))1.dx}dx
=xlog(2x)12x.(1)xdx
=xlog(2x)+x2xdx
=xlog(2x)+(2x)+22xdx
=xlog(2x)+(2x)2xdx+22xdx
=xlog(2x)dx+2dx2x
=xlog(2x)x2log(2x)
I1=10log(2x)dx=[xlog(2x)x2log(2x)]10
=1.log(21)12log(21)0+0+2log2
=log112log1+2log2
=1+2log2 [log1=0]
=2log21
Similarly I2=log(2+x)dx
=log(2+x)dx{ddx(log(2+x))dx}dx
=xlog(2+x)12+xxdx
=xlog(2+x)2+x22+xdx
=xlog(2+x)2+x2+xdx+22+xdx
=xlog(2+x)dx+212+xdx
=xlog(2+x)x+2log(2+x)
I2=10log(2+x)dx
=[xlog(2+x)x+2log(2+x)]10
=1log(2+1)1+2log(2+1)0+02log(2)
=log(3)1+2log32log2
=3log32log21
I=I1I2
=2log213log3+2log2+1
=4log23log3
=log24log33=log2433=log(1627).

1190042_1327692_ans_b1712ace10594d09839b2ff1521cdc5e.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon