I=∫1000tan−1xdx
Using integration by parts,
∫udv=uv−vdu
Let u=tan−1x,dv=dx
du=11+x2,v=x
I=xtan−1x−∫xdxx2+1
u1=x2+1
⇒du1dx=2x
I=xtan−1x−12∫du1u1
=xtan−1x−12ln(u1)+c
=xtan−1x−12ln(x2+1)+c∣∣∣1000
=100tan−1(100)−12ln(10001)−0+0
=100tan−1(100)−12ln(10001).