Solve ∫1000[tan−1x]dx
We know
−π2<tan−1x<π2
−1.57≤tan−1x<1.57
0≤tan−1x≤1.57
Now
0≤tan−1x<1[tan−1x]=0
0≤x≤tanx
1≤tan−1x<π2
tan1≤x≤100
∫1000[tan−1x]dx
∫tan100dx+∫100tan11dx
[x]100tan1
100−tan1
Option B