The correct option is
A 64231Let
I=∫π20√sinϕcos5ϕdϕ=∫π20√sinϕcos4ϕcosϕdϕ=∫π20√sinϕ(1−sin2ϕ)2cosϕdϕputt=sinϕdtdϕ=cosϕdt=cosϕdϕWhenϕ=0,t=0whenϕ=π2,t=1∴I=∫10√t(1−t2)2dt=∫10√t(1−2t2+t4)dt=∫10t12+t92−2t52dt=⎡⎢⎣23t32+211t112−47t72⎤⎥⎦10=23+211−47=154+42−1323×11×7=64231