Solve:
∫π20sinxdx9+cos2x
We have,
Let
cosx=t
sinxdx=dt
Therefore,
∫01dt9+t2
∫01dtt2+32=[13tan−1t3]10
=[13tan−103−13tan−113]
=[13tan−1tan0−13tan−113]
=−13tan−113
Hence, this is the answer.