Consider the given integral.
I=∫π20sin3xdx
We know that
sin3θ=3sinθ−4sin3θ
sin3θ=3sinθ−sin3θ4
Therefore,
I=∫π20(3sinx−sin3x4)dx
I=14(−3cosx−(−cos3x3))π20
I=14(−3cosx+cos3x3)π20
I=14⎛⎜ ⎜ ⎜⎝⎛⎜ ⎜ ⎜⎝−3cosπ2+cos3π23⎞⎟ ⎟ ⎟⎠−(−3cos0+cos03)⎞⎟ ⎟ ⎟⎠
I=14((0+03)−(−3+13))
I=14(83)=23
Hence, this is the answer.