1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Special Integrals - 1
Solve ∫2x3 ...
Question
Solve
∫
2
x
3
e
x
2
d
x
Open in App
Solution
2
x
3
e
x
2
d
x
⇒
Let
e
x
2
=
t
⇒
2
x
e
x
2
d
x
=
d
t
⇒
So,
∫
2
x
3
e
x
2
d
x
=
∫
x
2
.2
x
.
e
x
2
d
x
=
∫
log
e
t
d
t
[ Since
e
x
2
=
t
⇒
x
2
=
log
e
t
]
=
log
e
t
.
∫
1.
d
t
−
∫
(
d
(
log
e
t
)
d
t
.
∫
1.
d
t
)
d
t
=
log
e
t
.
t
−
∫
1
t
.
t
d
t
=
t
log
e
t
−
∫
1.
d
t
=
t
log
e
−
t
+
c
=
t
(
log
e
t
−
1
)
+
c
=
e
x
2
(
log
e
e
x
2
−
1
)
+
c
=
e
x
2
(
x
2
−
1
)
+
c
Suggest Corrections
0
Similar questions
Q.
∫
2
x
3
e
x
2
d
x
Q.
Solve:
lim
x
→
0
tan
−
1
x
x
.
solve.
Q.
Solve the equation,
2
cos
2
θ
+
3
sin
θ
=
0
Or
Solve the equation,
sec
2
2
x
=
1
−
tan
2
x
Q.
Solve: