wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve
(3x2)x2+x+1dx

Open in App
Solution

Let (3x2)=A×ddx(x2+x+1)+B
(3x2)=A×(x2+1)+B
3x2=2Ax+A+B
Comparing coefficient of both sides
2A=3A=32
and A+B=2
so, B=232
B=72
Now, 3x2=32(2x+1)72
Now, I=[32(2x+1)72]x2+x+1dx
I=32(2x+1)x2+x+1dx72x2+x+1dx
I=32I172I2 __(A)
Now, I1=(2x+1)x2+x+1dx
Put x2+x+1=t
(2x+1)dx=dt
Now, I1=tdt=23t3/2+C1
I1=23(x2+x+1)3/2+C1 __(B)
Now, I2=x2+x+1dx
=x2+x+1414+1dx
I2= (x+12)2+(32)2dx
=12(x+12)(x+12)2(32)2+12×34log/(x+12)+
=12(x+12)(x+12)2(32)2+34log|(x+12)+(x+12)2(32)2|
from eq (A) , (B) and (C)
I=(x2+x+1)3/274[(x+12)x2+x+1+34log
I=(x2+x+1)3/27(2x+1)8x2+x+1+2116log|x+12+
where, C=C1+C2

1080753_1018230_ans_aa988b694d214b5f94f7f5b20c4071f4.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon