Let
(3x−2)=A×ddx(x2+x+1)+B⇒(3x−2)=A×(x2+1)+B
⇒3x−2=2Ax+A+B
Comparing coefficient of both sides
2A=3⇒A=32
and A+B=−2
so, B=−2−32
B=−72
Now, 3x−2=32(2x+1)−72
Now, I=∫[32(2x+1)−72]√x2+x+1dx
I=32∫(2x+1)√x2+x+1dx−72∫√x2+x+1dx
I=32I1−72I2 __(A)
Now, I1=∫(2x+1)√x2+x+1dx
Put x2+x+1=t
(2x+1)dx=dt
Now, I1=∫√tdt=23t3/2+C1
I1=23(x2+x+1)3/2+C1 __(B)
Now, I2=∫√x2+x+1dx
=∫√x2+x+14−14+1dx
I2=∫
⎷(x+12)2+(√32)2dx
=12(x+12)√(x+12)2−(√32)2+12×34log/(x+12)+
=12⎡⎢⎣(x+12)√(x+12)2−(√32)2+34log|(x+12)+√(x+12)2−(√32)2|⎤⎥⎦
from eq (A) , (B) and (C)
I=(x2+x+1)3/2−74[(x+12)√x2+x+1+34log
I=(x2+x+1)3/2−7(2x+1)8√x2+x+1+2116log|x+12+
where, C=C1+C2