∫ba1√(x−a)(b−x)dx,b>alet,x=asin2θ+bcos2θdx=(2asinθcosθ+2bcosθsinθ)dθ=2sinθcosθ(a+b)dθwhen,x=a,thena=asin2θ+bcos2θ⇒acos2θ=bcos2θ⇒cosθ=00⇒θ=π2when,x=b,b=asin2θ+bcos2θ⇒θ=00∫0π22sinθcosθ√(b−a)cos2θ√(b−a)sin2θdθ=∫0π22sinθcosθ(a−b)(b−a)cosθsinθdθ=(a−b)×2×−π2=π(b−a)