We have,I=∫cos4x−sin4x√1+sin2xdx
I=∫(cos2x−sin2x)(cos2x+sin2x)√1+sin2xdx
I=∫(cos2x−sin2x)√1+sin2xdx ∵ sin2x+cos2x=1
I=∫cos2x√1+sin2xdx ∵ cos2x−sin2x=cos2x
Let
t=1+sin2x
dtdx=0+2cos2x
dt2=cos2x dx
Therefore,
I=12∫dt√t
I=12×2√t+C
I=√t+C
On putting the value of t, we get
I=√1+sin2x+C
Hence, this is the answer.