wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
cos4xsin4x1+sin2xdx

Open in App
Solution

We have,
I=cos4xsin4x1+sin2xdx

I=(cos2xsin2x)(cos2x+sin2x)1+sin2xdx

I=(cos2xsin2x)1+sin2xdx sin2x+cos2x=1

I=cos2x1+sin2xdx cos2xsin2x=cos2x

Let
t=1+sin2x
dtdx=0+2cos2x

dt2=cos2x dx

Therefore,
I=12dtt

I=12×2t+C

I=t+C

On putting the value of t, we get
I=1+sin2x+C

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon