wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve dxsinxsin(2x+α)

Open in App
Solution

dxsinxsin(2x+α)=dxsinxsin2xcosα+sinαcos2α
=dxsinx2sinxcosxcosα+sinα(cos2xsin2x)
=dxsin2x2cotxcosα+sinα(cot2x1)
=1sinαcsc2xdxcot2x+2cotαcotx1 Let t=cotx;dt=csc2xdx
=1sinαdtt2+2cotαt1
=1sinαdt(t+cotα)2(1+cot2α)
=1sinαdt(t+cotα)2csc2α
We know that 1x2a2dx=lnx+x2a2+C
=1sinαln(t+cotα)+(t+cotα)2csc2α+C
=1sinαln(cotx+cotα)+cot2x+2cotαcotx1+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon