∫dxsinx√sin(2x+α)=∫dxsinx√sin2xcosα+sinαcos2α
=∫dxsinx√2sinxcosxcosα+sinα(cos2x−sin2x)
=∫dxsin2x√2cotxcosα+sinα(cot2x−1)
=−1√sinα∫−csc2xdx√cot2x+2cotαcotx−1 Let t=cotx;dt=−csc2xdx
=−1√sinα∫dt√t2+2cotαt−1
=−1√sinα∫dt√(t+cotα)2−(1+cot2α)
=−1√sinα∫dt√(t+cotα)2−csc2α
We know that ∫1√x2−a2dx=ln∣∣x+√x2−a2∣∣+C
=−1√sinαln∣∣∣(t+cotα)+√(t+cotα)2−csc2α∣∣∣+C
=−1√sinαln∣∣(cotx+cotα)+√cot2x+2cotαcotx−1∣∣+C