∫x(7x−10−x2)3/2dx=−12∫−2x(7x−10−x2)3/2dx
=−12[∫(7−2x)(7x−10−x2)3/2dx−∫7(7x−10−x2)3/2dx]
A=∫(7−2x)(7x−10−x2)3/2dx, Let 7x−10−x2=m;dm=(7−2x)dx
=∫dmm3/2
=m−3/2+1−3/2+1+C=−2√m+C=−2(7x−10−x2)1/2+C
B=∫7(7x−10−x2)3/2dx=7∫1(94−(x−72)2)3/2dx; Let x−72=32y;∴dx=32dy
=7∫1(94−94y2)3/2(32)dy
=7∫(3/2)(32)3(1−y2)3/2dy
=289∫1(1−y2)3/2dy Let y=cosθ
dy=−sinθdθ
=289∫1(−sinθ)(1−cos2θ)3/2dθ
=289∫−sinθsin3θdθ
=289∫−csc2θdθ
=289cotθ+k
=289(y√1−y2)+k
=289⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝23(x−72)(1−49(x−72)2)1/2⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠+k
=2827⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝(2x−7)(49)1/2(94−(x−72)2)1/2⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠+k
=149(2x−7(7x−10−x2)1/2)+k
∴∫x(7x−10−x2)3/2dx=−12(A−B)
=−12⎛⎜
⎜
⎜⎝−2−28x9+989(7x−10−x2)1/2⎞⎟
⎟
⎟⎠+k1
=29(7x−40(7x−10−x2)1/2)+k1