We know that,
cos4x=2cos22x−1
⇒cos22x=1+cos4x2
Squaring both side and we get,}
⇒cos42x=(1+cos4x2)2
⇒cos42x=14(1+cos24x+2cos4x)
⇒cos42x=14[1+1+cos8x2+2cos4x]
⇒cos42x=18(2+1+cos8x+4cos4x)
⇒cos42x=18(3+cos8x+4cos4x)
On integrating and we get,
∫cos42xdx=∫18(3+cos8x+4cos4x)dx
=∫38dx+∫cos8x8dx+∫4cos4x8dx
=38∫1dx+18∫cos8xdx+12∫cos4xdx
=38x+18sin8x8+12sin4x4+C
=38x+sin8x16+sin4x8+C
Hence, this is the answer.