Im,n=∫cosmx.sinnxdx=cosmx.∫sinnxdx−∫[ddxcosmx.∫sinnxdx]dx=−(cosmx.cosnxn)−∫mncosm−1x.sinx.(−cosnxn)dx=−(cosmx.cosnxn)+mn∫cosm−1x.(sinx.cosnx)dx⟶(1)∵sin(n−1)x=sinnx.cosx−sinxcosnx⇒sinxcosnx=sinnx.cosx−sin(n−1)x⟶(2)puttingthevalueof(2)inequation(1)Im,n=−(cosmx.cosnxn)+mn∫cosm−1x.(sinnx.cosx−sin(n−1)x)dx=−(cosmx.cosnxn)+mn∫cosmx.sinnxdx−mn∫cosm−1x.sin(n−1)xdx=−(cosmx.cosnxn)+mnIm,n−mnIm−1,n−1⇒m−nnIm,n=(cosmx.cosnxn)+mnIm−1,n−1⇒Im,n=cosmx.cosnxm−n+mm−nIm−1,n−1