wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:cosnx.sinnx.dx

Open in App
Solution

Im,n=cosmx.sinnxdx=cosmx.sinnxdx[ddxcosmx.sinnxdx]dx=(cosmx.cosnxn)mncosm1x.sinx.(cosnxn)dx=(cosmx.cosnxn)+mncosm1x.(sinx.cosnx)dx(1)sin(n1)x=sinnx.cosxsinxcosnxsinxcosnx=sinnx.cosxsin(n1)x(2)puttingthevalueof(2)inequation(1)Im,n=(cosmx.cosnxn)+mncosm1x.(sinnx.cosxsin(n1)x)dx=(cosmx.cosnxn)+mncosmx.sinnxdxmncosm1x.sin(n1)xdx=(cosmx.cosnxn)+mnIm,nmnIm1,n1mnnIm,n=(cosmx.cosnxn)+mnIm1,n1Im,n=cosmx.cosnxmn+mmnIm1,n1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon