Given that ,
y=∫11−tanxdx ……(1)
Put t=1−tanx, we get
⇒tanx=t−1⇒tan2x=(t−1)2⇒sec2x=(t−1)2−1
sec2xdx=dt
dx=dtsec2x
y=∫1tdtsec2x
y=∫1tdt(t−1)2−1
=∫1t(t2−2t)dt
=∫1t2(t−2)dt
=∫(−t−24t2+14(t−2))dt
=−∫t+24t2dt+14∫1t−2dt
y=−18∫2t+4t2dt+14∫1t−2dt
=−18logt2+14log(t−2)+C
=−18log(1+tanx)+14log(1+tanx−2)+C
=−18log(1+tanx)+14log(tanx−1)+C