1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Ratios
Solve: ∫2 s...
Question
Solve:
∫
2
sin
2
x
−
cos
x
6
−
cos
2
x
−
4
sin
x
d
θ
.
A
2
log
(
sin
2
x
−
sin
x
+
5
)
+
7
tan
−
1
(
x
−
2
)
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
log
(
sin
2
x
−
sin
4
x
+
5
)
−
7
tan
−
1
(
x
−
2
)
+
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
log
(
sin
2
x
−
sin
4
x
+
5
)
−
7
tan
−
1
(
x
−
2
)
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2
log
(
sin
2
x
+
sin
x
+
5
)
+
7
tan
−
1
(
x
−
2
)
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
2
log
(
sin
2
x
−
sin
4
x
+
5
)
−
7
tan
−
1
(
x
−
2
)
+
C
∫
2
sin
2
θ
−
cos
θ
6
−
cos
2
θ
−
4
sin
θ
d
θ
∫
2
sin
2
θ
−
cos
θ
−
4
sin
θ
−
cos
2
θ
+
6
d
θ
=
−
∫
2
sin
2
θ
−
cos
θ
4
sin
θ
+
cos
2
θ
−
6
d
θ
Substituting
sin
2
θ
=
2
sin
θ
cos
θ
cos
2
θ
=
1
−
sin
2
θ
=
∫
cos
θ
(
−
4
sin
θ
−
1
sin
2
θ
−
4
sin
θ
+
5
)
d
θ
Substituting
u
=
sin
θ
→
d
θ
=
1
cos
θ
d
u
=
[
−
∫
4
u
−
1
u
2
−
4
u
+
5
d
u
]
4
u
−
1
as
2
(
2
u
−
u
)
+
7
=
∫
(
2
(
2
u
−
4
)
u
2
−
4
u
+
5
+
7
u
2
−
4
u
+
5
)
d
u
=
4
∫
u
−
2
u
2
−
4
u
+
5
d
u
+
7
∫
1
u
2
−
4
u
+
5
d
u
v
=
u
2
−
4
u
+
5
→
d
u
=
1
2
u
−
4
d
v
=
4
∫
1
2
v
d
v
=
1
2
∫
1
v
d
v
=
l
n
v
2
=
l
n
(
u
2
−
4
u
+
5
)
2
=
∫
1
(
u
−
2
)
2
+
1
d
u
v
=
u
−
2
→
d
u
=
d
v
=
∫
1
v
2
+
1
d
v
=
tan
−
1
(
v
)
v
=
u
−
2
=
tan
−
1
(
u
−
2
)
=
4
l
n
(
u
2
−
4
u
+
5
)
2
+
7
tan
−
1
(
u
−
2
)
=
−
2
l
n
(
u
2
−
4
u
+
5
)
−
7
tan
−
1
(
u
−
2
)
=
2
l
n
(
sin
2
θ
−
4
sin
θ
+
5
)
+
7
tan
−
1
(
sin
θ
−
2
)
∴
∫
2
sin
2
θ
−
cos
θ
6
−
cos
2
θ
−
4
sin
θ
d
θ
=
3
l
n
(
sin
2
θ
−
4
sin
θ
+
5
)
+
7
tan
−
1
(
sin
θ
−
2
)
Suggest Corrections
0
Similar questions
Q.
If
2
sin
x
+
5
cos
y
+
7
sin
z
=
14
then
7
tan
x
2
+
4
cos
y
−
6
cos
z
=
Q.
∫
x
2
+
1
x
4
+
1
d
x
will be equal to which of the following
Q.
Question 7
t
a
n
θ
+
t
a
n
(
90
∘
−
θ
)
=
s
e
c
θ
.
s
e
c
(
90
∘
−
θ
)
Q.
Solve for x:
(i)
x
-
1
x
-
2
+
x
-
3
x
-
4
=
3
1
3
;
x
≠
2
,
4
(ii)
1
x
-
1
x
-
2
=
3
,
x
≠
0
,
2
(iii)
x
+
1
x
=
3
,
x
≠
0
(iv)
16
x
-
1
=
15
x
+
1
,
x
≠
0
,
-
1
(v)
1
x
-
3
-
1
x
+
5
=
1
6
,
x
≠
3
,
-
5