∫5x2+20x+6x3+2x2+x=∫5x2+20x+6x(x2+2x+1)dx=∫5x2+20x+6x(x+1)2dx
Using partial cfraction,
Let, 5x2+20x+6x(x+1)2=Ax+Bx+1+C(x+1)2=A(x+1)2+Bx(x+1)+Cxx(x+1)2
Thus, 5x2+20x+6=Ax2+A+2Ax+Bx2+Bx+Cx=(A+B)x2+(2A+B+C)x+A
Comparing L.H.S and R.H.S
A+B=5,2A+B+C=20,A=6
Substituting A=6,A+B=5⇒6+B=5⇒B=5−6=−12A+B+C=20⇒2(6)−1+C=20⇒C=20−11=9
Substituting values of A,B and C
5x2+20x+6x(x+1)2=6x−1x+1+9(x+1)2∫5x2+20x+6x(x+1)2dx=6∫dxx−∫dxx+1+9∫dx(x+1)2=6log|x|−log|x+1|−9(x+1)+C=logx6|x+1|−9x+1+C