wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve
5x2+20x+6x3+2x2+xdx

Open in App
Solution

5x2+20x+6x3+2x2+x=5x2+20x+6x(x2+2x+1)dx=5x2+20x+6x(x+1)2dx

Using partial cfraction,

Let, 5x2+20x+6x(x+1)2=Ax+Bx+1+C(x+1)2=A(x+1)2+Bx(x+1)+Cxx(x+1)2

Thus, 5x2+20x+6=Ax2+A+2Ax+Bx2+Bx+Cx=(A+B)x2+(2A+B+C)x+A

Comparing L.H.S and R.H.S

A+B=5,2A+B+C=20,A=6

Substituting A=6,A+B=56+B=5B=56=12A+B+C=202(6)1+C=20C=2011=9

Substituting values of A,B and C

5x2+20x+6x(x+1)2=6x1x+1+9(x+1)25x2+20x+6x(x+1)2dx=6dxxdxx+1+9dx(x+1)2=6log|x|log|x+1|9(x+1)+C=logx6|x+1|9x+1+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon