We have,
I=∫cos(x+a)cos(x−a)dx
Putx−α=tdx=dtx=(α+t)
Therefore,
I=∫cos(2α+t)costdx=∫cos2α.cost−sin2α.sintcostdt=∫(cos2α−sin2α.tant)dt=t.cos2α+sin2α.log|cost|+C
On putting the value of t, we get
I=(x−α)cos2α+sin2α.log|cos(x−α)|+C
Hence, this is the answer.