wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:dx(x2+1)3

Open in App
Solution

dx(x2+1)3Letx=tanθdx=sec2θdθdx(x2+1)3=sec2θdθ(tan2θ+1)3=1sec4θdθ(1+tan2x=sec2x)=cos4θdθ=(cos2θ)2dθ=(cos2θ+12)2dθ(cos2x=2cos2x1)=14(cos22θ+2cos2θ+1)dθ
=14[cos4θ+12+2cos2θ+1]dθ=18[cos4θ+4cos2θ+3]dθ=132[sin4θ+8sin2θ+12θ]+C=132[sin(4tan1x)+8sin(2tan1x)+12(tan1x)]+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon