∫dx(x2+1)3Letx=tanθ⇒dx=sec2θdθ∴∫dx(x2+1)3=∫sec2θdθ(tan2θ+1)3=∫1sec4θdθ(∵1+tan2x=sec2x)=∫cos4θdθ=∫(cos2θ)2dθ=∫(cos2θ+12)2dθ(∵cos2x=2cos2x−1)=14∫(cos22θ+2cos2θ+1)dθ=14∫[cos4θ+12+2cos2θ+1]dθ=18∫[cos4θ+4cos2θ+3]dθ=132[sin4θ+8sin2θ+12θ]+C=132[sin(4tan−1x)+8sin(2tan−1x)+12(tan−1x)]+C