The correct option is
B secx−tanx+x+C∫sinx1+sinxdx
=∫sinx+1−11+sinxdx
=∫1dx−∫11+sinxdx
=x−∫11+sinxdx
∫11+sinxdx u=tanx2
1+sinx=1+u2+2u
=∫21+u2+2udu=∫2(1+u)2du
v=1+u dv=du
=∫2v2dv=−2v
=x−(−2v)
=x+2(11+u)
=x+2⎛⎜
⎜⎝11+tanx2⎞⎟
⎟⎠
∫sinx1+sinxdx=21+tanx2+x+C.