wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: xdxx3+1

Open in App
Solution

I=xdxx3+1xx3+1=x(x+1)(x2x+1)=x+13(x2x+1)13(x+1)I=x+13(x2x+1)dx13(x+1)dxI=13x+1(x2x+1)dxI113ln|x+1|inI1x+1=Addx(x2x+1)+Bx+1=A(2x1)+B2A=1A=121=A+B1=12+BB=32I=13⎢ ⎢ ⎢12(2x1)(x2x+1)dx+32dx(x2x+1)⎥ ⎥ ⎥13ln|x+1|I=16(2x1)(x2x+1)dx+12dx(x2x+1)13ln|x+1|put,t=x2x+1dt=(2x1)dxI=16dttdx+12dxx22×12×x+1414+113ln|x+1|I=16ln|t|+12dx(x12)2+3413ln|x+1|I=16lnx2x+1+12×13/2tan1(x1/23/2)13ln|x+1|I=16lnx2x+1+13tan1(2x13)13ln|x+1|+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon