I=∫xdxx3+1xx3+1=x(x+1)(x2−x+1)=x+13(x2−x+1)−13(x+1)I=∫x+13(x2−x+1)dx−∫13(x+1)dxI=13∫x+1(x2−x+1)dxI1−13ln|x+1|inI1x+1=Addx(x2−x+1)+B⇒x+1=A(2x−1)+B2A=1⇒A=121=−A+B⇒1=−12+B⇒B=32I=13⎡⎢
⎢
⎢⎣∫12(2x−1)(x2−x+1)dx+32∫dx(x2−x+1)⎤⎥
⎥
⎥⎦−13ln|x+1|I=16∫(2x−1)(x2−x+1)dx+12∫dx(x2−x+1)−13ln|x+1|put,t=x2−x+1dt=(2x−1)dxI=16∫dttdx+12∫dxx2−2×12×x+14−14+1−13ln|x+1|I=16ln|t|+12∫dx(x−12)2+34−13ln|x+1|I=16ln∣∣x2−x+1∣∣+12×1√3/2tan−1(x−1/2√3/2)−13ln|x+1|I=16ln∣∣x2−x+1∣∣+1√3tan−1(2x−1√3)−13ln|x+1|+C