wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve eaxcos bx dx=eaxa2+b2(acosbx+bsinbx)

Open in App
Solution

I=eaxcosbxdx
Integrate by parts -
=eaxcosbxdxdeaxdx(cosbxdx)dx
=eaxsinbxbaeaxsinbxbdx
=eaxsinbxbabeaxsinbxdx
=eaxsinbxbab[eaxsinbxdeaxdx(sinbxdx)dx]
=eaxsinbxbab[eaxcosbxbaeaxcosbxbdx]
I=eaxsinbxb+aeaxb2cosbxa2b2eaxcosbxdx
I+a2b2I=eaxsinbxb+aeaxb2cosbx
a2+b2b2I=eax(bsinbx+acosbx)b2
I=eaxa2+b2(acosbx+bsinbx)
Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon