∫(3x−2)(x+1)2(x+3)dxLet(3x−2)(x+1)2(x+3)=A(x+1)+B(x+1)2+C(x+3)⇒(3x−2)≡A(x+1)(x+3)+B(x+3)+C(x+1)2.......(i)Puttingx=−13nobothsideof(i),wegetC=−114Puttingx=−1onbothsidesof(i),wegetB=−52A+C=0⇒A=−C=114∴(3x−2)(x+1)2(x+3)=114(x+1)−52(x+1)2−114(x+3)⇒∫(3x−2)(x+1)2(x+3)dx=114∫dx(x+1)−52∫1(x+1)2dx−114∫dx(x+3)=114.log∣∣x+1x+3∣∣+52(x+1)+C