I=∫(3x+2)√2x2−x+1dx
for such questions write linear term as the first derivative of quadrant term.
i.e., 3x−2=A(ddx(2x2−x+1))+B
3x−2=A[4x−1]+B
3x−2=4Ax+B−A
4A=3 and B−A=−2
A=34B−=34=−2
B==34−2==−54
I=∫[34(4x−1)+(=−54)]√2x2−x+1dx
=34∫√2x2−x+1(4x−1)dx−54∫√2x2−x+1dx
2x2−x+1=t2
(4x−1)dx=2tdt
=32∫t2dt−=564∫
⎷(x−14)2+(√154)2
=32[t33]−5√24⎡⎢
⎢
⎢
⎢⎣(x−14)2√2x2−x+1−1532log∣∣∣x−14+√2x2−x+1∣∣∣⎤⎥
⎥
⎥
⎥⎦
⇒ (2x2−x+1)3/22−5√24[(x2−18)√2x2−x+1−1532log∣∣∣x−14∣∣∣+√2x2−x+1]