Solve ∫[log(logx)+1(logx)]dx
Consider the given integral.
I=[∫log(logx)+1logx]dx
We know that
∫uvdx=u∫vdx−∫(ddx(u)∫vdx)dx
Therefore,
I=∫log(logx)x−∫1logx×1x×xdx+∫1logxdx
I=xlog(logx)−∫1logxdx+∫1logxdx
I=xlog(logx)+C